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While the construction of metafrontiers based on the union of underlying group frontiers normally yields 

a non-convex metaset, a large majority in the literature seems to assume that a convexification strat- 

egy leads to a reasonable convex approximation of this non-convex metafrontier. However, Kerstens, 

O’Donnell, and Van de Woestyne (2019) recently deliver new results on the union operator on tech- 

nologies under a variety of assumptions and empirically illustrate that such a convexification strategy 

is doubtful. The purpose of this contribution is to verify to which extent such a convexification strat- 

egy is tenable when computing the Malmquist and Hicks–Moorsteen productivity indices with respect to 

a metafrontier. Furthermore, the differences between the Malmquist and Hicks–Moorsteen productivity 

indices are investigated at the metafrontier level. This existing methodology is empirically applied on a 

secondary data under a wide variety of assumptions: we explore balanced and unbalanced data as well as 

constant and variable returns to scale. Anticipating our key results, we provide statistical evidence on the 

potential bias arising from applying the convexification strategy for the metafrontier productivity indices. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Different organisations across industries, regions and countries

ay face different production possibilities at a given point in time

s well as over time. Heterogeneity in performance can be due to

ifferences in available technologies (i.e., the ways inputs can be

ransformed into outputs) and/or to differences in environments

e.g., economic infrastructure, regulation, geography, climate, etc.).

here have been a variety of alternative proposals around to ac-

ount for heterogeneity in production models. Some rather popular

ethods include the use of latent class models (e.g., Orea & Kumb-

akar, 2004 ), the aggregation over groups or industries (e.g., Mayer

 Zelenyuk, 2014 , but see Balk, 2016 for some caveats), among

thers. To the best of our knowledge, no theoretical or empirical

eview has ever compared these different methods to account for

eterogeneity in production. 
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This contribution focuses on one particular method to account

or heterogeneity when estimating production relations. One his-

orically important literature was initiated by Hayami and Ruttan

1970) who proposed and estimated a kind of meta-production

unction. This meta-production function concept has been empir-

cally applied mainly in agriculture and for country-level data: an

mpirical survey is found in Trueblood (1989) . Hayami and Ruttan

1970 , p. 898) “call the envelope of all known and potentially

iscoverable activities a secular or “meta-production function”.”

his secular production function indicates the maximum output

btainable from given inputs and from a given stock of knowledge.

hus, all organisations have access to the same set of input-output

ombinations, but each may choose a different input-output

ombination from that set depending on specific circumstances

e.g., regulation, relative prices, etc.). Some of this literature takes

he possibility of inefficiency into account (e.g., Lau & Yotopoulos,

989 ). 

These basic ideas have initially been transposed into a stochas-

ic production frontier framework by Battese and Rao (2002) and

attese, Rao, and O’Donnell (2004) . Thereafter, O’Donnell, Rao, and

attese (2008) refined the loose ends in the methodology and fi-

alised the formal metafrontier framework for making efficiency

omparisons across groups of firms using both stochastic frontier

https://doi.org/10.1016/j.ejor.2019.11.019
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Fig. 1. Group technologies and metatechnology: the single-input–single-output 

case. 
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analysis and nonparametric deterministic frontiers. This seminal

article defines a meta-production possibility set (or metaset) as

the union of underlying group-specific sets. These authors refer to

the boundary of the metaset as a metafrontier, and to the bound-

aries of the group-specific sets as group-specific frontiers (or group

frontiers). 

This so-called metafrontier approach has meanwhile been am-

ply applied across sectors and disciplines. Examples are production

studies from agriculture (e.g., Latruffe, Fogarasi, & Desjeux, 2012 ),

banking (e.g., Casu, Ferrari, & Zhao, 2013 ), fisheries (e.g., Lee &

Midani, 2015 ), hotels (e.g., Huang, Ting, Lin, & Lin, 2013 ), schools

(e.g., Thieme, Prior, & Tortosa-Ausina, 2013 ), and wastewater treat-

ment plants (e.g., Sala-Garrido, Molinos-Senante, & Hernández-

Sancho, 2011 ) to name but a few. This basic metafrontier concept

has found its way in a variety of other literatures: one example

is its transposition to a cost frontier framework (e.g., Huang & Fu,

2013 ); another example is the computation of productivity indices

relative to metafrontiers (see, e.g., Casu et al., 2013 and Huang,

Juo, & Fu, 2015 for a primal respectively a dual Malmquist index);

a final example is the development of more elaborate efficiency

decompositions (see Kounetas, Mourtos, & Tsekouras, 2009 and

Tsekouras, Chatzistamoulou, & Kounetas, 2017 ). 

Basic group-specific frontier models tend to make a series of

standard assumptions, one of which is convexity. This convexity

assumption can only be justified by a time divisibility argument

(see Hackman, 2008 , p. 39). But, even if group-specific sets are

convex, then the metaset defined by their union is normally non-

convex (see O’Donnell et al., 2008 ). Despite this basic mathemati-

cal fact that convex group-specific sets yield a nonconvex metaset,

the seminal article of O’Donnell et al. (2008) adopts a convexifi-

cation strategy by estimating the metafrontier as a boundary of a

convex metaset (see also, e.g., Battese & Rao, 2002; Battese et al.,

2004 ). Since this convexification strategy is normally not true, es-

timates of the metafrontier are potentially biased. While the large

majority of articles adopting a metafrontier approach seem to fol-

low such a convexification strategy, one should stress that some

articles do not adopt such a strategy: examples include Huang

et al. (2013) , Sala-Garrido et al. (2011) , Tiedemann, Francksen, and

Latacz-Lohmann (2011) , and (partially) Walheer (2018) among oth-

ers. Kerstens, O’Donnell, and Van de Woestyne (2019) elaborate

on the union operation on technologies under various assump-

tions and find empirically convincing evidence that a convexifica-

tion strategy leads to erroneous results in the estimation of effi-

ciency measures. 

The first purpose of this contribution is to investigate

the impact of a convexification strategy on the estimation of

metafrontier-based productivity indices. A variety of productivity

indices have been computed using metafrontiers: examples include

the popular primal Malmquist index (e.g., Casu et al., 2013 ) as well

as the primal Luenberger indicator (e.g., Zhang & Wang, 2015 ), the

dual (most often cost-based) Malmquist index (e.g., Huang et al.,

2015 ), the primal Färe–Primont (e.g., Dakpo, Desjeux, Jeanneaux,

& Latruffe, 2019 ), Hicks–Moorsteen (e.g., Verschelde, Dumont,

Rayp, & Merlevede, 2016 ) and Lowe (e.g., O’Donnell, Fallah-Fini, &

Triantis, 2017 ) Total Factor Productivity (TFP) indices, among oth-

ers. 1 The second purpose is to contrast the differences between

the Malmquist and Hicks–Moorsteen productivity indices at the

metafrontier level rather than at the standard frontier level (see

Kerstens & Van de Woestyne, 2014 for the latter comparison). 

This contribution is structured as follows. The next

Section 2 develops the geometric intuition why a convexifica-

tion strategy may potentially lead to biases in the estimation of

the metafrontier. Section 3 introduces notation and formally out-
1 Recent surveys on productivity indices and indicators are found in O’Donnell 

(2018) and Russell (2018) , among others. 

t

 

a  
ines the metafrontier methodology. Thereafter, Section 4 defines

he productivity indices that are computed relative to the

etafrontier: on the one hand the input-oriented Malmquist

roductivity index, and on the other hand the Hicks–Moorsteen

FP index that combines input- and output-oriented efficiency

easures. Section 5 specifies the details about the deterministic

onparametric frontier technologies employed in computing the

roductivity indices relative to the metafrontier. Then, the next

ection 6 offers an empirical illustration using a secondary data

et of hydroelectric power plants from Chile. Finally, the last

ection 7 summarizes results and draws some conclusions. 

. Metafrontier and convexification strategy: a clarification 

It is essential to remind the reader about the intuition underly-

ng the metafrontier approach. To fix our ideas, we start by an ex-

mple taken from wastewater treatment plants ( Sala-Garrido et al.,

011 ). There are four main technologies for wastewater treatment:

ctivated sludge, aerated lagoon, trickling filter, and rotating bio-

ogical contactor (biodisk). Suppose we focus on two such tech-

ologies to simplify matters. 

Fig. 1 illustrates the single-input-single-output case when only

wo technologies exist. Group technology T 1, t consists of 8 observa-

ions ( B 1 , C 1 , D 1 , E 1 , F 1 , G 1 , H 1 , J 1 ) denoted by square dots and rep-

esented by the polyline A 1 B 1 F 1 H 1 I 1 and the horizontal axis. Group

echnology T 2, t consists of 8 observations ( B 2 , C 2 , D 2 , E 2 , F 2 , G 2 ,

 2 , J 2 ) also denoted by square dots and represented by the poly-

ine A 2 B 2 F 2 H 2 I 2 and the horizontal axis. The metatechnology T �, t is

ow the union of technologies T 1, t and T 2, t : it is clearly nonconvex.

 

�, t consists of all points between the polyline A 1 B 1 PB 2 F 2 H 2 I 2 and

he horizontal axis. The convexification strategy consists in convex-

fying this nonconvex metatechnology T �, t by adding the region de-

oted by the polyline B 1 PB 2 F 2 B 1 . 

Let us now explore what happens when we project ineffi-

ient observations with respect to the frontiers of these technolo-

ies. From the 8 observations in group technology T 1, t , 5 obser-

ations are situated below the frontier and are therefore ineffi-

ient. Let us focus on inefficient observation J 1 : it is projected onto

rojection point J ′′ 
1 

on the line segment B 1 F 1 of the group tech-

ology T 1, t and can learn to position itself onto this frontier from

ombining somehow the inputs and outputs of observations B 1 and

 1 . The same observation J 1 can also be projected with respect to

he other group technology at projection point J ′ 
1 
. 

From the 8 observations in group technology T 2, t , 5 observations

re also situated below the frontier and are therefore inefficient.
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2 Färe and Primont (1995 , p. 22) indicate that weak rather than strong dispos- 

ability of the inputs is sufficient to guarantee this representation. 
et us focus on inefficient observation J 2 : it is projected onto pro-

ection point J ′ 2 on the line segment B 2 F 2 of the group technology

 

2, t and can learn to position itself onto this frontier from combin-

ng somehow the inputs and outputs of observations B 2 and F 2 . 

However, the same observation J 2 can now be projected with

espect to the other group technology at projection point J ′′ 
2 

de-

ending on whether or not we adopt a convexification strategy. If

e do not adopt a convexifixation strategy, then the metatechnol-

gy is nonconvex and the projection point J ′′ 
2 

is simply infeasible.

he distance to the metatechnology coincides with the distance to

ts own group technology and the distance to the other group tech-

ology is simply undefined. The reason why the projection point

 

′′ 
2 

is deemed infeasible is because this presupposes making a lin-

ar combination of point B 1 from group technology T 1, t and point

 2 from group technology T 2, t . While we allow for convex combi-

ations within each group technology, we normally rule out taking

onvex combinations across group technologies. 

If we adopt a convexifixation strategy, then the metatechnology

ecomes convex again and the projection point J ′′ 
2 

can be achieved.

t should be realized that this convexification strategy is to some

xtent self-contradictory, because it destroys the very idea of dis-

inguishing between different group technologies and only allow-

ng for convexity per group technology. In other words, the union

perator on group technologies does not normally preserve the

onvexity axiom on the resulting metatechnology. 

The large majority of articles adopting a metafrontier approach

eem to follow such a convexification strategy: a benign interpre-

ation is that most authors just follow O’Donnell et al. (2008) and

ssume that such a strategy is rather harmless. Kerstens et al.

2019) cite a handful of articles that do not adopt such a strategy.

alheer (2018 , p. 1015) states in this context: “All in all, the safest

ption is to assume a non-convex envelopment, as in the original

efinition of O’Donnell et al. (2008) , while assuming a convex en-

elopment should be well-motivated.”

Our reading of the metafrontier productivity literature also con-

rms this tendency: the large majority of articles adopts a con-

exification strategy. We are only aware of three exceptions. First,

erschelde et al. (2016) compute a metafrontier Hicks–Moorsteen

FP index starting from nonconvex group technologies: this choice

or nonconvex technologies automatically leads to a nonconvex

etatechnology. However, most researchers seem reluctant to give

p the convexity of the group technologies and therefore we

lso maintain the convexity of the group technologies in this

ontribution. 

Second, Afsharian, Ahn, and Harms (2018) report a metafron-

ier Malmquist productivity index starting from convex group

echnologies and report differences when computing a wrong

onvexified metatechnology rather than a correct nonconvex

etatechnology. However, our work differs from these authors in

wo respects. First, we use formal statistical test procedures to ver-

fy whether a convexification strategy is innocuous or not (instead

f a mere comparison). Second, we use the standard Malmquist

roductivity index computed over a two year time window, while

hese authors compute a so-called overall Malmquist index relative

o one global technology computed over all available time periods

see Afsharian & Ahn, 2015 for more details). 

Third, Walheer (2018) focuses on the aggregation of metafron-

ier technology gap ratios and contrasts the results of wrong con-

exified and correct nonconvex metatechnologies, but this author

eports no formal statistical test procedure. 

. Metafrontier methodology 

In this methodological section, we follow closely the notation

nd terminology introduced in Kerstens et al. (2019) . We mainly
ntroduce an additional time superscript to handle the time dy-

amics of productivity measurement. 

.1. Technology and technology-specific frontier, metatechnology and 

etafrontier 

O’Donnell (2016 , p. 328) defines a technology as “a technique,

ethod or system for transforming inputs into outputs...For most

ractical intents and purposes, it is convenient to think of a tech-

ology as a book of instructions, or recipe”. This definition is

dopted here: we perceive a technology as a kind of intellectual

apital. 

Technology is represented by a technology-specific production

ossibilities set (TPPS), which is a set containing all possible combi-

ations of inputs and outputs using a given technology. Let x t ∈ R 

M + 
enote vectors of inputs and let y t ∈ R 

N + denote vectors and out-

uts at time period t . The set of all pairs of input and output vec-

ors that can be produced at time period t using technology g is

escribed as follows: 

 

g,t = { (x t , y t ) ∈ R 

M 

+ × R 

N 
+ : x 

t with technology g can produce y t } . 
(1) 

he boundary of this TPPS is called a technology-specific frontier .

ommonly, one makes the following assumptions on the TPPS: 

(T.1) ( x t , 0) ∈ T g , t for all x t ∈ R 

M + . 
(T.2) If (0, y t ) ∈ T g , t , then y t = 0 . 

(T.3) T g , t is a closed subset of R 

M + × R 

N + . 
(T.4) If ( x t , y t ) ∈ T g , t and (x ′ , −y ′ ) ≥ (x t , −y t ) , then ( x ′ , y ′ ) ∈ T g , t . 

(T.5) T g , t is a convex set. 

(T.6) If ( x t , y t ) ∈ T g , t , then δ( x t , y t ) ∈ T g , t for all δ ≥ 0. 

hese traditional axioms concerning technology g in period t state

hat: (i) inaction is possible, (ii) there is no free lunch, (iii) the set

f feasible input-output combinations contains all the points on

ts boundary (closedness), (iv) inputs and outputs are strongly (or

reely) disposable, (v) the technology is convex, and (vi) the tech-

ology satisfies constant returns to scale in that observations can

e scaled down or up at will. For more details on these axioms:

ee, for instance, Hackman (2008) . 

Note that the first assumption (T.1) is not always maintained

n this contribution. Furthermore, in the empirical illustration we

mpose either constant returns to scale (T.6) or the more tradi-

ional variable returns to scale assumption (which amounts to the

bsence of any scaling: δ = 1 ). 

When axiom (T.4) is maintained, then T g , t is represented by the

ollowing technology-specific input distance function: 

 

g,t 
I 

(x t , y t ) = sup 

λ∈ R + 

{
λ : (x t /λ, y t ) ∈ T g,t 

}
. (2) 

his function is (i) non-negative, (ii) linearly homogeneous in in-

uts, and (iii) no less than unity for all ( x t , y t ) ∈ T g , t . 2 

The technology set or metatechnology � is the set of all tech-

ologies g that exist for all time periods. If a technology is seen

s a recipe, then following Caselli and Coleman (2006 , p. 509)

ne can view a technology set as “a library, containing blueprints,

r recipes to turn inputs into outputs”. The set of all input and

utput vectors that are feasible using a given technology set �

i.e., using some technology that is contained in �) is labelled a

etatechnology-specific production possibilities set (MTPPS). Mathe- 

atically, this MTPPS is defined as 

 

�,t = { (x t , y t ) ∈ R 

M 

+ × R 

N 
+ : ∃ g ∈ � such that x t with 

technology g can produce y t } . (3) 
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Obviously, we have that T �,t = ∪ g∈ �T g,t . The boundary of a MTPPS

is called a metafrontier . 

When strong disposability applies (i.e., (T.4) is true), then the

MTPPS T �, t can be represented using the metatechnology-specific

input distance function: 

D 

�,t 
I 

(x t , y t ) = max 
g∈ �

{ d g,t 
I 

(x t , y t ) } . (4)

Equivalently, D 

�,t 
I 

(x t , y t ) = sup λ∈ R + { λ : (x t /λ, y t ) ∈ T �,t } . This func-

tion is non-negative, linearly homogeneous in inputs, and no less

than unity for all ( x t , y t ) ∈ T �, t . 

Instead of using the technology-specific input distance function

(2) , T g , t can also be represented by the technology-specific output

distance: 

d g,t 
O 

(x t , y t ) = inf 
λ∈ R + 

{
λ : (x t , y t /λ) ∈ T g,t 

}
. (5)

This function is (i) non-negative, (ii) linearly homogeneous in out-

puts, and (iii) no greater than unity for all ( x t , y t ) ∈ T g , t . 3 Under

the strong disposability assumption (T.4), the MTPPS T �, t can then

be represented using the metatechnology-specific output distance

function: 

D 

�,t 
O 

(x t , y t ) = min 

g∈ �
{ d g,t 

O 
(x t , y t ) } . (6)

Equivalently, D 

�,t 
O 

(x t , y t ) = inf λ∈ R + { λ : (x t , y t /λ) ∈ T �,t } . This func-

tion is non-negative, linearly homogeneous in outputs, and less

than unity for all ( x t , y t ) ∈ T �, t . 

3.2. Technical efficiency 

In this contribution, the input-oriented metatechnology-specific

technical efficiency ( ITE ) of an organization using inputs x t to pro-

duce outputs y t using some technology g ∈ � at time period t is

defined as the reciprocal of the metatechnology-specific input dis-

tance function (4) : 

ITE 

�,t (x t , y t ) = 1 /D 

�,t 
I 

(x t , y t ) . (7)

This radial technical efficiency measure lies in the closed unit in-

terval and indicates the maximum proportional reduction in x t that

still allows production of y t by some technology g ∈ �. 

If � contains more than one technology, then the measure of

ITE (7) can be written as the product of an input-oriented metat-

echnology ratio ( IMR ) and a measure of residual input-oriented

technical efficiency ( RITE ). Mathematically, the IMR relative to the

technology set � of a firm that uses inputs x t and technology g to

produce outputs y t is 

IMR 

g�,t (x t , y t ) = d g,t 
I 

(x t , y t ) /D 

�,t 
I 

(x t , y t ) . (8)

Also this measure lies in the closed unit interval. It can be in-

terpreted as an input-oriented technical efficiency measure of

whether a firm has chosen the best technology that is available.

The associated measure of RITE is 

RITE 

g,t (x t , y t ) = 1 /d g,t 
I 

(x t , y t ) . (9)

This measure also lies in the closed unit interval and indicates the

maximum proportional reduction in x t that allows production of

y t when using technology g for time period t . It can also be inter-

preted as the component of ITE that remains after accounting for

the IMR (whence the term “residual”). Obviously, Eqs. (4) , (7) and

(9) imply that 

ITE 

�,t (x t , y t ) = min 

g∈ �
{ RITE 

g,t (x t , y t ) } . (10)
3 Färe and Primont (1995 , p. 22) show that weak rather than strong disposability 

of the outputs is sufficient to guarantee this representation. 

v  

t  

a  
ote that some of the components in (10) can be undefined for

ome input-output combinations that are not contained in the

roup technology composing the technology or metatechnology

see Briec & Kerstens, 2009 for details on infeasibilities). Finally,

qs. (7) –(9) imply that 

TE 

�,t (x t , y t ) = IMR 

g�,t (x t , y t ) · RITE 

g,t (x t , y t ) . (11)

ence, technical efficiency can be decomposed into the product of

 metatechnology ratio and a measure of residual technical effi-

iency: the first measures how close a technology-specific frontier

s to the metafrontier, while the second measures how close a firm

s operating to the technology-specific frontier. 

By analogy with the former, the output-oriented

etatechnology-specific technical efficiency ( OTE ) of an or-

anization using inputs x t to produce outputs y t using some

echnology g ∈ � at time period t is defined as the reciprocal of

he metatechnology-specific output distance function (6) : 

TE 

�,t (x t , y t ) = 1 /D 

�,t 
O 

(x t , y t ) . (12)

his radial technical efficiency measure results in values larger

han or equal to one and indicates the maximum proportional ex-

ansion in y t that is still achievable with x t inputs by some tech-

ology g ∈ �. 

If � contains more than one technology, then the measure of

TE (12) can be written as the product of an output-oriented

etatechnology ratio ( OMR ) and a measure of residual output-

riented technical efficiency ( ROTE ). Mathematically, the OMR rela-

ive to the technology set � of a firm that uses inputs x t and tech-

ology g to produce outputs y t is 

MR 

g�,t (x t , y t ) = d g,t 
O 

(x t , y t ) /D 

�,t 
O 

(x t , y t ) . (13)

he associated measure of ROTE is 

OTE 

g,t (x t , y t ) = 1 /d g,t 
O 

(x t , y t ) . (14)

his measure also has values greater than or equal to one and in-

icates the maximum proportional expansion in y t that can still be

ealized with inputs x t when using technology g for time period t .

t can also be interpreted as the component of OTE that remains

fter accounting for the OMR (whence the term “residual”). Obvi-

usly, Eqs. (6) , (12) and (14) imply that 

TE 

�,t (x t , y t ) = max 
g∈ �

{ ROTE 

g,t (x t , y t ) } . (15)

ike in the input orientation, some of the components in (15) can

e undefined for some input-output combinations that are not

ontained in the group technology composing the technology or

etatechnology (see Briec & Kerstens, 2009 for details on infeasi-

ilities). 

. Metafrontier productivity indices 

The measurement of productivity has in the last 25 years or

o often been analysed using a technology-based, discrete-time

almquist productivity index. Initially defined by Caves, Chris-

ensen, and Diewert (1982) as a ratio of distance functions, this

ndex has become increasingly popular due to the innovations

f Färe, Grosskopf, Lindgren, and Roos (1995) . The latter authors

ave shown how: (i) to relax the hypothesis of technical efficiency

aintained in Caves et al. (1982) ; (ii) to decompose this index into

echnology shifts and technical efficiency changes; and (iii) to com-

ute this index relative to multiple inputs and outputs technolo-

ies by exploiting the relationship between distance functions and

echnical efficiency measures. O’Donnell (2012) argues rather con-

incingly that the Malmquist productivity index is not a Total Fac-

or Productivity (TFP) index. This same position is also found in,

mong others, O’Donnell (2018 , p. 120–121) and Russell (2018) . It
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s rather a technology index aimed at mainly measuring local tech-

ical change (see Grosskopf, 2003 ). Therefore, we also compare the

almquist productivity index with the Hicks–Moorsteen TFP index,

ne among the several available TFP indices (see O’Donnell, 2018;

ussell, 2018 ). 

To the best of our knowledge, this is the first comparison of

he Malmquist productivity index and the Hicks–Moorsteen TFP in-

ex within a metafrontier context. Earlier, such a comparison using

tandard technologies has already been published in the literature

see e.g., Kerstens & Van de Woestyne, 2014 ). The latter authors

eport that the Malmquist and Hicks–Moorsteen indices are em-

irically clearly distinct under variable returns to scale. Under con-

tant returns to scale, empirical differences are less clear cut at the

ample level, though strong differences may persist for individual

bservations. 4 

.1. Metafrontier Malmquist productivity index 

One can define the input-oriented metafrontier Malmquist pro-

uctivity index ( IMMI ) in base period t as follows: 

M M I �,t (x t , y t , x t+1 , y t+1 ) = 

IT E �,t (x t+1 , y t+1 ) 

IT E �,t (x t , y t ) 
. (16)

alues of this base period t input-oriented IMMI above (below)

nity reveal productivity growth (decline). Similarly, a base period

 + 1 input-oriented IMMI is defined as follows: 

M M I �,t+1 (x t , y t , x t+1 , y t+1 ) = 

IT E �,t+1 (x t+1 , y t+1 ) 

IT E �,t+1 (x t , y t ) 
. (17)

gain, values of this base period t + 1 input-oriented IMMI above

below) unity reveal productivity growth (decline). 

To avoid an arbitrary selection among base years, the input-

riented IMMI is defined as a geometric mean of a period t and

 period t + 1 index: 

M M I �,t ,t +1 (x t , y t , x t+1 , y t+1 ) 

= 

[
IT E �,t (x t+1 , y t+1 ) 

IT E �,t (x t , y t ) 
· IT E �,t+1 (x t+1 , y t+1 ) 

IT E �,t+1 (x t , y t ) 

]1 / 2 

. (18) 

ote again that when the geometric mean of the IMMI is larger

smaller) than unity, then it points to a productivity growth

decline). 

Remark that the above definitions deviate from the original

nes in Caves et al. (1982) in that the ratios have been inverted.

his ensures that productivity indices above (below) unity reveal

roductivity growth (decline), which is in line with traditional TFP

ndices. 

There is a considerable literature and quite some controversy

n the best way to decompose the Malmquist productivity index

see, e.g., Lovell, 2003 ). In this contribution, we opt for the sim-

lest possible decomposition of the metafrontier Malmquist pro-

uctivity index and we refrain from entering into these controver-

ies on the best decomposition (see Zofio, 2007 for a somewhat

ated summary of these discussions). Following Färe, Grosskopf,

indgren, and Roos (1992) and Färe, Grosskopf, Norris, and Zhang

1994) , an equivalent way of writing this IMMI index is 

M M I �,t ,t +1 (x t , y t , x t+1 , y t+1 ) 

= 

IT E �,t+1 (x t+1 , y t+1 ) 

IT E �,t (x t , y t ) ︸ ︷︷ ︸ 
(IMEC) 

·
[

IT E �,t (x t , y t ) 

IT E �,t+1 (x t , y t ) 
· IT E �,t (x t+1 , y t+1 ) 

IT E �,t+1 (x t+1 , y t+1 ) 

]1 / 2 

︸ ︷︷ ︸ 
(IMT C) 

, 

(19)
4 A similar comparison using difference-based indicators rather than ratio-based 

ndices is available in the literature: see, e.g., Kerstens, Shen, and Van de Woestyne 

2018) . 

M

M  
here the ratio outside the brackets represents the relative input-

riented metatechnology efficiency change ( IMEC ) from period t

o t + 1 . The part inside the brackets captures the shift of the

etafrontiers between two periods. Due to the treatment of avoid-

ng an arbitrary selection among years in (18) , the geometric mean

f the two ratios evaluated at ( x t , y t ) and (x t+1 , y t+1 ) is specified

s the input-oriented metatechnology change ( IMTC ). 

Referring to (11) , IMEC can be further represented in terms of

MR and RITE , which can be written: 

MEC �,t ,t +1 (x t , y t , x t+1 , y t+1 ) 

= 

RIT E g,t+1 (x t+1 , y t+1 ) 

RIT E g,t (x t , y t ) ︸ ︷︷ ︸ 
(IT EC) 

· IMR 

g�,t+1 (x t+1 , y t+1 ) 

IMR 

g�,t (x t , y t ) ︸ ︷︷ ︸ 
(IMRC) 

, (20) 

here the first part measures the efficiency changes with respect

o the technology-specific frontier (i.e., input-oriented technology-

pecific efficiency change ( ITEC )), whereas the second part depicts

he input-oriented change of IMR ( IMRC ) between periods t to

 + 1 . The latter describes whether the distance between

echnology-specific frontier and metafrontier in period t + 1 is

etting smaller or larger than that in period t . 

In conclusion, the proposed IMMI is represented by means of

he following decomposition: 

M M I = IT EC · IM RC · IM T C. (21)

pecifically, ITEC > 1 ( < 1) indicates that the unit under evaluation

s approaching (moving away from) the corresponding technology-

pecific frontier from period t to t + 1 in the input-orientation.

MRC > 1 ( < 1) shows that the technology-specific frontier is ap-

roaching (moving away from) its metafrontier from period t to

 + 1 in the input-orientation. Finally, the last component im-

lies a metatechnology progress (regress) from period t to t + 1 if

MTC > 1 ( < 1). 

Note that the IMMI and its components can all be affected

y the convexification strategy applied to the computation of the

etatechnology, except the ITEC component that is evaluated with

espect to the group-specific frontiers only. Furthermore, note that

ore elaborate decompositions of the metafrontier Malmquist in-

ex have been proposed in the literature: see, e.g., Chen and Yang

2011) . 

.2. Metafrontier Hicks–Moorsteen productivity index 

The seminal article by Bjurek (1996) introduces a Hicks–

oorsteen TFP index with a base period t as the ratio of a

almquist type output quantity index ( MO ) in base period t over a

almquist type input quantity index ( MI ) in the same base period

 . Applied to a metatechnology �, this period t based metatechnol-

gy Hicks–Moorsteen productivity ( MHM ) index boils down to the

ollowing: 

 HM 

�,t (x t , y t , x t+1 , y t+1 ) = 

MO 

�,t (x t , y t , y t+1 ) 

MI �,t (x t , x t+1 , y t ) 
, (22)

ith 

O 

�,t (x t , y t , y t+1 ) = 

OT E �,t (x t , y t ) 

OT E �,t (x t , y t+1 ) 

nd 

I �,t (x t , x t+1 , y t ) = 

IT E �,t (x t , y t ) 

IT E �,t (x t+1 , y t ) 
. 

 metatechnology Hicks–Moorsteen productivity index larger

smaller) than unity indicates a gain (loss) in productivity. 

Similarly, the period t + 1 based metatechnology Hicks–

oorsteen TFP index is defined as follows: 

 HM 

�,t+1 (x t , y t , x t+1 , y t+1 ) = 

MO 

�,t+1 (x t+1 , y t+1 , y t ) 

MI �,t+1 (x t , x t+1 , y t+1 ) 
, (23)
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MO 

�,t+1 (x t+1 , y t+1 , y t ) = 

OT E �,t+1 (x t+1 , y t ) 

OT E �,t+1 (x t+1 , y t+1 ) 

and 

MI �,t+1 (x t , x t+1 , y t+1 ) = 

IT E �,t+1 (x t , y t+1 ) 

IT E �,t+1 (x t+1 , y t+1 ) 
. 

Again, a metatechnology Hicks–Moorsteen productivity index

larger (smaller) than unity points to a productivity gain (loss). 

To avoid an arbitrary choice of base year, it is customary to

take a geometric mean of these two Hicks–Moorsteen TFP indices

(22) and (23) (see Bjurek, 1996 ): 

M HM 

�,t ,t +1 (x t , y t , x t+1 , y t+1 ) 

= 

[
M HM 

�,t (x t , y t , x t+1 , y t+1 ) · M HM 

�,t+1 (x t , y t , x t+1 , y t+1 ) 

]1 / 2 

. 

(24)

Note once more that a geometric mean metatechnology Hicks–

Moorsteen productivity index larger (smaller) than unity indicates

a productivity gain (loss). 

Note that decompositions of the Hicks–Moorsteen TFP index are

still rare in the literature. A recent proposal for a decomposition

is the one by Diewert and Fox (2017) , but it has rarely if ever

been applied. The sole study applying the metatechnology Hicks–

Moorsteen index (i.e., Verschelde et al., 2016 ) did not decompose.

The comparison study of the Malmquist and Hicks–Moorsteen in-

dices with standard technologies of Kerstens and Van de Woestyne

(2014) did not decompose as well. Therefore, we do not develop a

decomposition of the Hicks–Moorsteen index here. 

Note that under specific assumptions on the group technolo-

gies these two productivity indices coincide: see Färe, Grosskopf,

and Roos ( 1996; 1998 ), Bjurek, Førsund, and Hjalmarsson (1998) ,

and O’Donnell (2012) for more details, and Kerstens and Van de

Woestyne (2014 , Section 2.4) for a brief review. 

5. Nonparametric frontier technologies 

If each TPPS is convex and exhibits VRS at time period t , then

this TPPS is defined as: 

T g,t 
C,V RS 

= 

{
(x t , y t ) ∈ R 

M 

+ × R 

N 
+ : 

n g ∑ 

i =1 

λφg (i ) x 
t 
φg (i ) ≤ x t , 

n g ∑ 

i =1 

λφg (i ) y 
t 
φg (i ) ≥ y t , 

n g ∑ 

i =1 

λφg (i ) = 1 , λφg (i ) ∈ R + 

}
, (25)

with s g,t = { (x t 
φg (i ) 

, y t 
φg (i ) 

) : i = 1 , . . . , n g } the set of n g initial obser-

vations at time period t determining technology g . The associated

MTPPS is simply defined as the union of the above TPPS: 

T �,t 
C,V RS 

= ∪ g∈ �T g,t 
C,V RS 

. (26)

The convexified version of (26) yields the following metatech-

nology: 

H 

�,t 
C,V RS 

= 

{
(x t , y t ) ∈ R 

M 

+ × R 

N 
+ : 

∑ 

g∈ �

n g ∑ 

i =1 

λφg (i ) x 
t 
φg (i ) ≤ x t , 

∑ 

g∈ �

n g ∑ 

i =1 

λφg (i ) y 
t 
φg (i ) ≥ y t , 

∑ 

g∈ �

n g ∑ 

i =1 

λφg (i ) = 1 , λφg (i ) ∈ R + 

}
. 

(27)

O’Donnell et al. (2008 , p. 238) employ this specification to deter-

mine an estimate of metatechnology-specific technical efficiency. 5 
5 In fact, O’Donnell et al. (2008) compute an output-oriented metatechnology- 

specific technical efficiency under the assumption that there is no technical change. 

D  

m  

c

owever, note that in general T �,t 
C,V RS 

⊆ H 

�,t 
C,V RS 

where equality holds

nly for restrictive special cases (e.g., if only one group technology

xists), as follows from Proposition 5.5 in Kerstens et al. (2019) .

he basic question we address in this contribution is whether the

se of (27) leads to efficiency estimates that are close to the esti-

ates obtained using the unbiased estimator (26) . 

If each TPPS is convex and exhibits CRS at time period t , then

his TPPS is defined as: 

 

g,t 
C,CRS 

= 

{
(x t , y t ) ∈ R 

M 

+ × R 

N 
+ : 

n g ∑ 

i =1 

λφg (i ) x 
t 
φg (i ) ≤ x t , 

n g ∑ 

i =1 

λi y 
t 
φg (i ) ≥ y t , λφg (i ) ∈ R + 

}
, (28)

ith s g,t = { (x t 
φg (i ) 

, y t 
φg (i ) 

) : i = 1 , . . . , n g } the set of n g initial obser-

ations at time period t determining technology g . The associated

TPPS is again defined as the union of the previous TPPS: 

 

�
C,CRS = ∪ g∈ �T g,t 

C,CRS 
. (29)

he convexified version of (29) defines the following metatechnol-

gy: 

 

�,t 
C,CRS 

= 

{
(x t , y t ) ∈ R 

M 

+ × R 

N 
+ : 

∑ 

g∈ �

n g ∑ 

i =1 

λφg (i ) x 
t 
φg (i ) ≤ x t , 

∑ 

g∈ �

n g ∑ 

i =1 

λφg (i ) y 
t 
φg (i ) ≥ y t , λφg (i ) ∈ R + 

}
. (30)

roposition 5.5 of Kerstens et al. (2019) implies that T �,t 
C,CRS 

⊆ H 

�,t 
C,CRS 

,

hereby equality only holds for restrictive special cases. Again, the

asic question is whether the use of (30) generates efficiency esti-

ates that are close to the estimates obtained using the unbiased

stimator (29) . 

The convex technology specifications with variable (i.e.,

25) and (27) ) and constant (i.e., (28) and (30) ) returns to scale

re commonly known as data envelopment analysis (moniker DEA)

odels. If the TPPS exhibit VRS (respectively CRS), then the tech-

ology specification (25) (respectively (28) ) can be used to com-

ute the measure of RITE (9) by solving a linear program for each

valuated observation (see Hackman, 2008 or Ray, 2004 ). The as-

ociated MTPPS (26) and (29) can be used to compute the mea-

ure of ITE (7) by solving for each evaluated observation several

inear programs: one per TPPS. Recently, Afsharian and Podinovski

2018) show how to achieve the measure of ITE (7) relative to the

TPPS by solving a single LP problem. The convexification strategy

mbodied in the technologies (27) and (30) normally leads to a

iased estimator for the ITE measure: it is an open empirical ques-

ion how biased these computations exactly are when computing

roductivity indices with respect to a metafrontier. 

Fig. 2 illustrates the issue at stake using variable returns to scale

echnologies (just as in Fig. 1 ). The TPPS T 1, t and T 2, t make up the

ssociated MTPPS in period t . Similarly, the TPPS T 1 ,t+1 and T 2 ,t+1 

onstitute the components of the associated MTPPS in period t + 1 .

rom the discussion in Section 4 we recall that IMMI as well as

ts components can be affected by the convexification strategy ap-

lied to the MTTPS except for the ITEC component (since it is based

n RITE ). For instance, when projecting observation D 2 in period

 ( D 

t 
2 
) to the MTTPS in period t , then we can either project on

he true MTTPS at point D 

′ 
2 

or at the convexified MTTPS at point

 

′′ 
2 . When projecting this same observation to the MTTPS in pe-

iod t + 1 , then we can either project on the true MTTPS at point

 

′′′ 
2 

or at the convexified MTTPS at point D 

′′′′ 
2 

. Obviously, these

easurements involving ITE may affect both the IMRC and IMTC

omponents. 
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Fig. 2. Group technologies and metatechnologies over time. 
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. Empirical illustration: hydroelectric power plants 

.1. Secondary data 

This empirical section aims to illustrate the implications of a

onvexification strategy using secondary data that were previously

sed by Atkinson and Dorfman (2009) to evaluate the performance

f an unbalanced panel of Chilean hydroelectric power plants.

hese data are publicly available on the data repository of the Jour-

al of Applied Econometrics . 6 This sample comprises monthly data

n M = 3 inputs and N = 1 output for 21 Chilean hydroelectric

ower plants over the period from April 1986 to December 1997.

here are 7 dam plants and 14 run-of-river (ROR) plants in this

ample. The three inputs are labor (in thousands of workers), cap-

tal (in real pesos), and water (in cubic meters). The single output

s electricity generated (in gigawatt hours). More details regarding

hese data is found in Atkinson and Dorfman (2009) and Atkinson

nd Halabí (2005) . 

In Chile two main techniques (technologies) are employed to

enerate hydroelectric power. The first technology (index 1) builds

 dam on a river to store water and releases this water from the

am to spin turbines generating electricity. The main advantage

f dam systems is that electricity generation is uncoupled from

iver flows. The second hydroelectric power technology (index 2)

nvolves merely diverting river flows through turbines. The advan-

age of these ROR or diversion systems is that these are relatively

nexpensive and have relatively little impact on the environment.

 key disadvantage of such systems is that these cannot be used

o match electricity generation with consumer demand. 7 By con-

truction, the technology set � = { 1 , 2 } . 
Our understanding of hydroelectric power generation leads us

o believe that it may be possible for the manager of a given dam

ROR) plant to use a given input vector to produce a given level

f output for some time within the planning period, and then use

 different input vector to produce a different level of output for

he rest of the time. This suggests that each TPPS may be convex.

onsequently, we begin by computing these TPPSs t 1 and t 2 us-

ng a convex nonparametric frontier technology. Given the different

ypes of capital involved in constructing different plants, it is also

ur understanding that the manager of a given plant cannot learn
6 Web site: http://qed.econ.queensu.ca/jae/ . 
7 A third hydroelectric power technology, called pumped storage, allows to match 

lectricity generation with variations in consumer demand. But, there are no 

umped storage plants in this sample. 

i

o

c

ow to improve the performance by convex combinations of dam

ystems and ROR systems. This suggests that the MTPPS should not

e convexified. It is now an open question to check how a convex-

fication strategy of the MTPPS approximates the true nonconvex

TPPS. 

.2. Empirical results 

Table 1 contains basic descriptive statistics of the IMMI esti-

ates and its components with balanced and unbalanced panel

ata of hydroelectric power plants under CRS and VRS technolo-

ies, respectively. This table is structured as follows: first we dis-

uss the columns, then we explain the rows. The first four columns

ist the results under a CRS technology and the last four columns

ssume a VRS technology. Within each of these technologies, the

rst two columns report the results with unbalanced panel data

hile the last two columns develop the balanced panel data re-

ults. A further distinction is related to whether a convexification

trategy is applied or not: a C indicates a convexification strategy

s applied to calculate ITE , while NC reveals that this is not the

ase. Horizontally, the first block of rows contains the results of the

MMI estimates. The following three horizontal blocks of rows re-

orts the decomposition results of IMMI . Within each of these four

orizontal blocks, we report results on geometric means, standard

eviations, minimum and maximum values of the corresponding

stimates. The use of geometric means guarantees the multiplica-

ive decomposition of the IMMI . 

Furthermore, a nonparametric Li-test is applied to test the null

ypothesis that the distributions of the two C vs. NC IMMI as well

s its two components IMRC and IMTC are equal. Since the ITEC

omponent does not differ under C vs. NC, no test statistic is com-

uted. This Li-test is first proposed by Li (1996) and has been re-

ned by Fan and Ullah (1999) and others: one of the most recent

evelopments is by Li, Maasoumi, and Racine (2009) . This nonpara-

etric test analyzes the differences between entire distributions

y comparing the differences between two kernel-based estimates

f density functions f and g of a random variable x . The null hy-

othesis affirms that both density functions are almost everywhere

qual ( H 0 : f (x ) = g(x ) for all x ). The alternative hypothesis simply

egates this equality of both density functions ( H 1 : f ( x ) 
 = g ( x ) for

ome x ). Simar and Zelenyuk (2006) refine this test statistic fur-

her for nonparametric frontier estimators to circumvent the prob-

em of the potential spurious mass at the boundary. While this is

 general problem for efficiency measures, the productivity indices

s ratios of efficiency measures do not suffer from this problem.

he test statistics marked with “∗∗∗” means the null hypothesis is

ejected at the 0.1% significance level. A large (resp. small) p value

ndicates that the null hypothesis should not be rejected (resp. be

ejected). 8 

Finally, the number as well as the percentage of contradictory

esults implied by comparing estimates under C and NC strategies

re reported in the last row of each block (denoted “#Contrad.

es.”). Contradictory results arise when one estimate points to a

roductivity decline while the other shows a productivity growth,

r the other way around. 

Note that the computation of these descriptive statistics and

ests is based on the productivity indicators available. Hence, the

umber of valid results may differ from case to case. Taking the

ase of balanced panel data as an example, there are 1085 valid

MMI results under CRS. Due to the occurrence of computational

nfeasibilities, the valid number under VRS is only 933. 
8 The Matlab code for the Li-test adopted here is developed by P.J. Kerstens based 

n Li et al. (2009) . The Simar and Zelenyuk (2006) refinement is also an option. This 

ode is found at: https://github.com/kepiej/DEAUtils . 

http://qed.econ.queensu.ca/jae/
https://github.com/kepiej/DEAUtils
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Table 1 

Descriptive statistics and Li-test for the estimates of IMMI and its decompositions. 

CRS VRS 

Unbalanced Balanced Unbalanced Balanced 

C NC C NC C NC C NC 

IMMI Mean 1.0434 1.0443 1.0181 1.0191 1.0397 1.0461 1.0246 1.0361 

Std. dev. 0.3486 0.3492 0.1911 0.1982 0.3084 0.3321 0.2348 0.3106 

Min 0.1687 0.1660 0.3970 0.3970 0.1853 0.1662 0.1859 0.2163 

Max 6.1295 6.0020 2.4833 2.4833 5.0747 5.3552 2.6642 2.6642 

Li-test −2.4605 0.5387 4.3619 ∗∗∗ 7.3193 ∗∗∗

p -value (0.999) (0.2675) (0.001) (0.0005) 

#Inf. 0/2412 0/1085 185/2412 152/1085 

Res. (0) (0) (7.67%) (14.01%) 

#Contrad. 35/2412 29/1085 200/2227 73/933 

Res. (1.45%) (2.67%) (8.98%) (7.82%) 

ITEC Mean 1.0245 1.0028 1.0121 1.0013 

Std. dev. 0.2616 0.0774 0.1924 0.0531 

Min 0.1705 0.5906 0.2134 0.5672 

Max 4.3616 1.7857 5.0214 1.6507 

IMRC Mean 1.0105 1.0099 1.0108 1.0116 1.0104 1.0061 1.0090 1.0040 

Std. dev. 0.1694 0.1692 0.1516 0.1581 0.1561 0.1374 0.1376 0.0861 

Min 0.3107 0.2944 0.4916 0.4916 0.4072 0.2379 0.5020 0.5118 

Max 5.3189 5.7023 1.9405 1.9405 2.4700 4.2052 2.1427 2.0855 

Li-test 483.4166 ∗∗∗ 259.9905 ∗∗∗ 158.8927 ∗∗∗ 489.1541 ∗∗∗

p -value (0.0000) (0.0000) (0.0000) (0.0000) 

#Contrad. 731/2412 230/1085 873/2227 268/933 

Res. (30.31%) (21.20%) (39.20%) (28.72%) 

IMTC Mean 1.0130 1.0143 1.0119 1.0110 1.0211 1.0331 1.0141 1.0269 

Std. dev. 0.1431 0.1472 0.1480 0.1440 0.1859 0.2530 0.1751 0.2742 

Min 0.5246 0.5215 0.5246 0.5215 0.2157 0.2220 0.1962 0.2163 

Max 2.0983 2.1508 1.8789 1.8789 2.7293 3.1923 2.6642 2.6642 

Li-test −2.0476 1.0960 6.3767 ∗∗∗ 6.5930 ∗∗∗

p -value (0.9930) (0.1245) (0.0000) (0.0000) 

#Contrad. 127/2412 57/1085 349/2227 153/933 

Res. (5.27%) (5.25%) (15.67%) (16.40%) 
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Several observations can be made with regard to the results in

Table 1 . First, the basic descriptive statistics for IMMI , IMRC and

IMTC estimates all show certain differences when comparing be-

tween C and NC strategies. In addition, the IMMI estimates under

a C strategy are on average lower than the ones under a NC strat-

egy in our data. Theoretically, estimates of these indices derived

under C strategy can be either higher or lower than the ones de-

rived under NC strategy. This is consistent with the observations

for the IMRC and IMTC estimates. As for the ITEC estimates, which

capture the efficiency changes with respect to technology-specific

frontiers, the convexification strategy makes no difference. 

Second, the Li-test for the IMRC estimates reveals that the C

strategy leads to a significant difference in the distribution of the

metafrontier compared with the NC strategy. This holds true for

both CRS and VRS technologies. For the VRS technology, a statis-

tically significant difference can be found for all IMMI and IMTC

estimates. Thus, for our data the convexification strategy has a

stronger influence on calculating these estimates under VRS than

under CRS. 

Third, all estimates under various cases offer some contradic-

tory signs between applying C and NC strategies. On average, more

contradictory signs are detected in the estimates of IMRC and IMTC

than that of IMMI . The percentage of contradictory signs reaches

39.2% for IMRC estimates and 16.40% for IMTC . The contradictory

signs appear more frequently under the VRS technology than un-

der CRS. This coincides with the above finding that the bias of ap-

plying the convexification strategy is more evident under VRS than

under CRS for our data. 

The descriptive statistics results, results for the nonparametric

Li-test, and contradictory signs for the metafrontier Hicks–

Moorsteen ( MHM ) TFP estimates are displayed in Table 2 . This
able is similar in structure to Table 1 , except that only the MHM

stimate is reported and no decomposition. 

The following observations can be made regarding this Table 2 .

irst, minor differences are observed between the C and NC strate-

ies from the basic descriptive statistics of the MHM estimates.

econd, a statistically significant difference in distributions is de-

ected by the Li-test for the case with balanced data and under the

RS assumption only. Third, contradictory results exist while com-

aring between C and NC strategies for all four cases. Furthermore,

ore opposite signs show up under the VRS assumption than un-

er the CRS assumption. Fourth, no infeasibilities are recorded (see

riec & Kerstens, 2011 who prove that the Hicks–Moorsteen index

oes not yield any infeasibilities under standard assumptions on

echnology). 

In general, we can conclude that applying a convexification

trategy for both productivity indices shows quite a difference from

he original non-convex metafrontier productivity indices. The con-

radictory results also underscore the drawback of applying a con-

exification strategy. More specifically, there is a non-negligible

ossibility that the suggestions based on the estimates obtained

y applying a convexification strategy lead to opposite conclusions

nd policy recommendations. 

In Table 3 the degree of similarity between the metafrontier

almquist and Hicks–Moorsteen productivity indices – both ob-

ained under the correct NC strategy – is investigated. Although

 detailed analysis of this similarity exists in the literature at the

ormal frontier level (see, e.g., Kerstens & Van de Woestyne, 2014 ),

heir similarity at the metafrontier level has – to the best of our

nowledge – not been compared before. First, note that the em-

irical study here contains a single output and multiple inputs.

his makes both metafrontier productivity indices coincide under
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Table 2 

Descriptive statistics and Li-test for the estimate of MHM . 

CRS VRS 

Unbalanced Balanced Unbalanced Balanced 

C NC C NC C NC C NC 

Mean 1.0434 1.0443 1.0181 1.0191 1.0496 1.0489 1.0254 1.0262 

Std. dev. 0.3486 0.3492 0.1911 0.1982 0.4033 0.3924 0.2484 0.2586 

Min 0.1687 0.1660 0.3970 0.3970 0.1040 0.1040 0.1774 0.1774 

Max 6.1295 6.0020 2.4833 2.4833 8.3617 8.0871 4.6910 4.6910 

Li-test −2.4605 9.3788 ∗∗∗ −2.6610 −1.9210 

p -value (1.0000) (0.0000) (1.0000) (0.9995) 

# Inf. 0/2412 0/1085 0/2412 0/1085 

Res. (0) (0) (0) (0) 

# Contrad. 31/2412 29/1085 52/2412 39/1085 

Res. (1.29%) (2.67%) (2.16%) (3.59%) 

Table 3 

Descriptive statistics and Li-test for the estimates of IMMI and MHM. 

VRS 

Unbalanced Balanced 

IMMI MHM IMMI MHM 

Mean 1.0461 1.0489 1.0361 1.0262 

Std. dev. 0.3321 0.3924 0.3106 0.2586 

Min 0.1662 0.1040 0.2163 0.1774 

Max 5.3552 8.0871 2.6642 4.6910 

Li-test 3.8946 ∗∗ 13.7819 ∗∗∗

p -value (0.0020) (0.0000) 

# Inf. 185/2412 0/2412 152/1085 0/1085 

Res. (7.67%) (0) (14.01%) (0) 

# Contrad. 281/2227 145/933 

Res. (12.62%) (15.54%) 
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he CRS assumption (see Bjurek et al., 1998 ). However, both in-

ices potentially remain to show differences under VRS. Second,

e can observe that all descriptive statistics somewhat vary be-

ween IMMI and MHM . There are no infeasibilities detected in cal-

ulating MHM , while infeasibilities arise in calculating IMMI under

RS. Accordingly, the results where the distributions and contra-

ictory signs are examined are based on available indices. Third,

he Li-test shows that the distributions of IMMI and MHM are sig-

ificantly different for the balanced data under VRS at the sig-

ificance level of 0.1%. For the case with unbalanced data under

RS, their distributions are significantly different at the signifi-

ance level of 1%, which is marked with “∗∗” in Table 3 . Finally, the

ercentage having contradictory results between IMMI and MHM

eaches 15.54% and 12.62% under balanced and unbalanced panel

ata, respectively. Therefore, the above observations all imply that

he IMMI and MHM indices under VRS are empirically distinct. 

The main purpose of this empirical application is twofold.

irst, we investigate the impact of a convexification strategy on

he estimation of metafrontier-based productivity indices. The sec-

nd goal is to compare the differences between Malmquist and

icks–Moorsteen indices at the metafrontier level. For these pur-

oses, the findings of descriptive statistics, Li-tests and contradic-

ory signs are presented as analytical findings to show statistical

vidence on the bias of a convexification strategy and the differ-

nces between both indices. 

. Conclusions 

In their seminal article, O’Donnell et al. (2008) define a non-

onvex metatechnology as the union of two or more under-

ying group-specific technologies. They suggest estimating the

etafrontier (i.e., the boundary of the metatechnology) under the
ssumption that the metatechnology is convex. If this assumption

ields a poor approximation of the true nonconvex metatechnol-

gy, then their convexification strategy yields a biased estimator.

ecently, Kerstens et al. (2019) develop some new results on the

nion operation on technologies under various assumptions of re-

urns to scale and convexity and are the first to statistically test

hat a convexification strategy leads to erroneous results. Note that

his controversy exists when the group-specific frontier is convex.

ut, as shown in Verschelde et al. (2016) and Walheer (2018) , the

roup-specific frontiers could also be estimated relative to a non-

onvex setting. Then, the corresponding metafrontier is again nat-

rally nonconvex. Prior to choosing specific estimates, practitioners

ay explore the proper group-specific technology (e.g., returns to

cale or convexity) in the way suggested by Kneip, Simar, and Wil-

on (2016) . 

This is the first empirical contribution that explores the impact

f a convexification strategy on a Malmquist productivity index

valuated relative to a metafrontier methodology. Theoretically, we

nd that the input-oriented Malmquist productivity index itself

s well as its components input-oriented metatechnology change

 IMTC ) and input-oriented metatechnology ratio change ( IMRC ) are

otentially affected by the choice of a convexification strategy.

owever, this is not the case for the input-oriented technical effi-

iency change ( ITEC ) component. Empirically, our results for a sec-

ndary date set reveal that a convexification strategy leads to sta-

istically significant differences for the input-oriented Malmquist

roductivity index and its components. Furthermore, at the level

f the individual observations it can lead to opposite signs for a

ubstantial fraction of the sample. 

Equally so, this is the first contribution that investigates the

mpact of a convexification strategy on a metafrontier Hicks–

oorsteen TFP index. Though at the level of the individual obser-

ations, we can observe some opposite signs for some fraction of

he sample, our empirical results show that a convexification strat-

gy only leads to statistically significant differences for the bal-

nced CRS case. 

Finally, to the best of our knowledge, this is the first study com-

aring the Malmquist technology index with the Hicks–Moorsteen

FP index in a metafrontier setting. Just as in the case of a stan-

ard technology, the CRS case in our setting being identical, we do

nd contradictory results and statistically significant differences for

he VRS case. This confirms earlier comparative results on standard

echnologies (e.g., Kerstens & Van de Woestyne, 2014 ). 

In conclusion, we can state that this contribution has shown

hat a convexification strategy threatens to undermine the

etafrontier methodology by yielding biased results when the

roup technologies are assumed to be convex. We may safely as-

ume that these conclusions also transpose to alternative produc-

ivity indices such as, e.g., the Luenberger indicator and the dual
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Malmquist index, and to the primal TFP indices (such as the Färe–

Primont and Lowe indices, among others). However, it would be

good if future research sheds more light on this conjecture. There

also remain other open challenges for future investigation. One in-

teresting extension is related to inferential issues. While inference

for Malmquist indices has been extensively studied (e.g., Simar &

Wilson, 1999 or more recently Kneip, Simar, & Wilson, 2018 ), there

is no closed analytical form for inference about the productivity

changes measured by metafrontier productivity indices. 
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